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University of California, Berkeley
Physics H7A Fall 1998 (Strovink)

FINAL EXAMINATION

Directions. Do all six problems (weights are indicated). This is a closed-book closed-note exam
except for three 81

2 × 11 inch sheets containing any information you wish on both sides. You are
free to approach the proctor to ask questions – but he or she will not give hints and will be obliged
to write your question and its answer on the board. Use a bluebook. Do not use scratch paper –
otherwise you risk losing part credit. Cross out rather than erase any work that you wish the grader
to ignore. Justify what you do. Box or circle your answer.

Problem 1. (30 points)
Northern Canada has two peculiar features: ow-
ing to lack of roads, most surface transportation
occurs by train; and the principal fauna are tiny
black flies.

Consider the elastic (kinetic energy conserving)
head-on collision of a locomotive of mass M and
velocity V with a stationary black fly of mass m.
You may make any reasonable approximation
concerning the relative magnitude of M and m.

a. (15 points)
With what velocity v does the fly recoil from the
locomotive?

b. (15 points)
Assuming that the (coasting) locomotive has flat
frontal area A, and there are N black flies per
cubic meter hovering over the track, apply the
results of part (a.) to obtain a differential equa-
tion for V (neglect air resistance). Solve it to
obtain V (t).

Problem 2. (20 points)

A space probe is launched with initial velocity
v0 and impact parameter b toward a very dis-
tant planet of radius R and very large mass Mp

(see figure). Find the maximum value of b for
which the rocket will hit the planet.

Problem 3. (30 points)
For decades, scientists have been designing a
“space colony” in which thousands of people
could exist while orbiting the sun. People would
live on the inside curved surface of a large air-
filled cylinder (length of order 10 km, radius R of
order 1 km). The cylinder would rotate about its
axis with an angular velocity ω such that earth’s
gravitational acceleration g would be simulated
by the centrifugal force acting near that surface.
The curved surface would have dirt for farming,
and also housing, factories, parks, hills, streams,
a lake, etc. Sunlight would enter through one
end; it would be controlled by mirrors and shut-
ters to simulate day and night. There would be
clouds and weather, etc.

a. (5 points)
Find the angular frequency ω of rotation.

b. (10 points)
Although many aspects of life in this colony
would resemble life on earth, one peculiar fea-
ture would be the large Coriolis acceleration.
When v (as seen by a colony inhabitant) is per-
pendicular to ω, the magnitude of the Coriolis
acceleration aC can be expressed as

aC = g
v

vC

where vC is a characteristic velocity. Find
vC appropriate to the surface inhabited by the
colonists.
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c. (15 points)
For residents in the colony, north is defined to
be in the direction of ω; if a resident faces north
her right hand points east. A baseball pitcher,
new to the colony, fires a ball toward the west
with velocity v at his target a distance D away.
If he were on the surface of the earth (where the
Coriolis force is negligible), the ball would hit its
target. In what direction (high, low, north, or
south) does the ball miss its target? By what dis-
tance d does it miss (you may assume d � D)?

Problem 4. (30 points)
A mass m is connected by a massless spring
of stiffness k = mω2

0 to a point of support xs.
When the spring is relaxed, and xs = 0, the mass
is at its equilibrium position x = 0. The mass
moves only in the x direction, without friction.

Suppose that the point of support is constrained
by an external force to obey the following mo-
tion: xs = mA sinωt, where A and ω are con-
stants, and ω is not necessarily equal to ω0. The
external force does not act directly on the mass,
but it nevertheless influences the mass because
of the spring.

a. (15 points)
Find the particular solution xp(t) which would
vanish if A were zero.

b. (15 points)
Find the solution x0(t) which would be correct
if the mass were fixed at its equilibrium position
and released at t = 0.

Problem 5. (30 points)
Consider a thin cylindrical pipe of length L,
closed at both ends. The air inside the pipe can
support longitudinal (sound) waves that propa-
gate along the axis of the pipe. Let ξ(x, t) be
the displacement (along the axis of the pipe)
of an air molecule whose equilibrium coordinate

(along the same axis) is x. As usual, ξ satisfies
the wave equation

∂2ξ

∂x2
+

1
c2

∂2ξ

∂t2
= 0

where c is the (phase and group) velocity of
sound waves in air.

a. (3 points)
Keeping in mind that the pipe is closed at both
ends, write down the boundary conditions on
ξ(0, t) and ξ(L, t).

b. (12 points)
The air inside the straight closed pipe is observed
to carry a standing sinusoidal sound wave. What
is the lowest angular frequency ωs with which
this wave can vibrate?

c. (3 points)
The ends of the pipe are now opened and the
pipe is bent into a hoop. The end at x = 0 is
welded to the end at x = L, so that the pipe
forms a continuously hollow circular torus (like
a hula hoop) with a circumference equal to L.

Continue to consider sound waves that propa-
gate along the (bent) axis of the pipe. As long
as the circumference of the hoop is much larger
than the pipe thickness, which is the case here,
ξ(x, t) satisfies the same wave equation as be-
fore. However, since the pipe is now bent into a
continuously hollow torus, x = 0 and x = L now
describe the same coordinate along the pipe’s
axis. More generally, ξ(x, t) and ξ(x + L, t) de-
scribe the displacement from equilibrium of the
same molecule.

In light of the above, write down the relationship
between ξ(x, t) and ξ(x+ L, t).
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d. (12 points)
The air inside the bent pipe is observed to carry
a travelling sinusoidal sound wave. Keeping in
mind the result of part (c.), what is the lowest
angular frequency ωt that can characterize this
wave? What is the ratio of ωt to the result ωs

of part (b.)?

Problem 6. (30 points)
Nonviscous fluid matter is in spherically sym-
metric, nonrelativistic flow toward a black hole
of mass M . Only the gravitational attraction
of the black hole itself (as opposed to the grav-
itational attraction of other fluid elements) is
important to the fluid motion. M is growing
slowly enough to be taken as constant.

a. (10 points)
Consider Φ, the potential energy per unit mass
of fluid due to the gravitational attraction of the
black hole. Starting from the standard formula
for the gravitational force between two point
objects, show that

Φ(r) = −GM

r

where r is the distance from the black hole. Note
that in spherical polar coordinates

∇u = r̂
∂u

∂r
+ . . .

(You may use this result for Φ in subsequent
parts of the problem.)

b. (10 points)
Because M is taken as constant, the fluid flow is
steady:

∂v
∂t

=
∂ρ

∂t
= 0

where ρ is the mass density. Also, the fluid pres-
sure p is known not to vary either with position
or time.

Away from the black hole, determine the depen-
dence of fluid |velocity| v upon r.

c. (10 points)
Away from the black hole, determine the depen-
dence of fluid mass density ρ upon r.

Note that, in spherical polar coordinates,

∇ · F =
1
r2

∂

∂r
(r2Fr) + . . .


